Intuitive Interpretations of Asymptotic Notations
Definitions
$$\begin{eqnarray*} O(f(n))) & \equiv & \{ g(n) | \exists C > 0, n_0 \in N, \forall n \geq n_0 (g(n) \leq C f(n)) \} \\ \Theta(f(n)) & \equiv & \{ g(n) | \exists C_1,C_2 > 0, n_0 \in N, \forall n \geq n_0 (C_1 f(n) \leq g(n) \leq C_2 f(n)) \} \\ \Omega(f(n)) & \equiv & \{ g(n) | \exists C > 0, n_0 \in N, \forall n \geq n_0 (g(n) \geq C f(n)) \} \\ o(f(n)) & \equiv & O(f(n)) - \Theta(f(n)) \\ \omega(f(n)) & \equiv & \Omega(f(n)) - \Theta(f(n)) \\ \end{eqnarray*}$$Intuitions
$$\Theta(\cdot)$$ | $$=$$ | |
transitivity | $$f \in \Theta(g) \;\wedge\; g \in \Theta(h) \Longrightarrow f \in \Theta(h)$$ | $$a = b \;\wedge\; b = c \Longrightarrow a = c$$ |
reflexivity: | $$f \in \Theta(f)$$ | $$a = a$$ |
symmetry | $$f \in \Theta(g) \Longrightarrow g \in \Theta(f)$$ | $$a = b \Longrightarrow b = a$$ |
$$O(\cdot)$$ | $$\leq$$ | |
transitivity | $$f \in O(g) \;\wedge\; g \in O(h) \Longrightarrow f \in O(h)$$ | $$a \leq b \;\wedge\; b \leq c \Longrightarrow a \leq c$$ |
reflexivity: | $$f \in O(f)$$ | $$a \leq a$$ |
anti-symmetry | $$f \in O(g) \;\wedge\; g \in O(f) \Longrightarrow f \in \Theta(g)$$ | $$a \leq b \;\wedge\; b \leq a \Longrightarrow a = b$$ |
$$\Omega(\cdot)$$ | $$\geq$$ | |
transitivity | $$f \in \Omega(g) \;\wedge\; g \in \Omega(h) \Longrightarrow f \in \Omega(h)$$ | $$a \geq b \;\wedge\; b \geq c \Longrightarrow a \geq c$$ |
reflexivity: | $$f \in \Omega(f)$$ | $$a \geq a$$ |
anti-symmetry | $$f \in \Omega(g) \;\wedge\; g \in \Omega(f) \Longrightarrow f \in \Theta(g)$$ | $$a \geq b \;\wedge\; b \geq a \Longrightarrow a = b$$ |
$$o(\cdot)$$ | < | |
transitivity | $$f \in o(g) \;\wedge\; g \in o(h) \Longrightarrow f \in o(h)$$ | $$a < b \;\wedge\; b < c \Longrightarrow a < c$$ |
$$\omega(\cdot)$$ | > | |
transitivity | $$f \in \omega(g) \;\wedge\; g \in \omega(h) \Longrightarrow f \in \omega(h)$$ | $$a > b \;\wedge\; b > c \Longrightarrow a > c$$ |
Q: explain these in intuitive terms: (1) \( \Theta(f) \subseteq O(f) \) and (2) \( \Theta(f) \subseteq \Omega(f) \) Also, \( \Theta(f) = O(f) \cap \Omega(f) \).
Caution: Some functions may not be comparable to each other using asymptotic notations. For example, \( f(n) = n \) and \(g(n) = n^{1+\sin n}\) are not comparable to each other. That is, none of the 5 asymptotic notations applies to their comparison.
Useful Theorems and Proof Techniques
- If \(g \in o(f)\) then \(f+g \in \Theta(f)\). Example: \(n^2+5n-4 \in \Theta(n^2)\)
- If \(g \in O(f)\) then \(f+g \in \Theta(f)\). Example: \(4 n^2 + n^2 \in \Theta(n^2)\)
- If \(c\) is a positive constant, then \(cf \in \Theta(f)\). Example: \(\log(3) n^2 \in \Theta(n^2)\)
- \(\log_a f(n) \in \Theta(\log_b f(n))\) for all \(a,b > 1\). Example: \(\log_{10}(n^3-2n+5) \in \Theta(\lg(n^3-2n+5))\)
- If \(g_1 \in \Theta(f_1)\) and \(g_2 \in \Theta(f_2)\) then \(g_1 g_2 \in \Theta(f_1 f_2)\) and \(g_1/g_2 \in \Theta(f_1/f_2)\). Example: \((2n^2+5n)(\log(n)+7) \in \Theta(n^2 \log(n))\) and \((2n^2+5n)/(\log(n)+7) \in \Theta(n^2/\log(n))\)
- \(\displaystyle \lim_{n \rightarrow \infty} \frac{f}{g} = 0 \Longleftrightarrow f \in o(g)\) Example: \(\log(n) \in o(n)\) and \(n^{999} \in o(1.1^n)\)
- \(\displaystyle \lim_{n \rightarrow \infty} \frac{f}{g}\) exists and non-zero \(\Longrightarrow f \in \Theta(g)\) Example: \((n+a)^b \in \Theta(n^b)\)
- \(1^k + 2^k + 3^k + \cdots + n^k \in \Theta(n^{k+1})\)
- Sterling's Approximation: \(n! = \sqrt{2 \pi n} \left(\frac{n}{e}\right)^n \left( 1 + \Theta\left(\frac{1}{n}\right) \right)\)
- If \(f(n) \leq ... \leq ... \leq g(n)\) for sufficiently large n, then \(f \in O(g)\).
- If \(f(n) \geq ... \geq ... \geq g(n)\) for sufficiently large n, then \(f \in \Omega(g)\).
Frequently Seen Functions
$$\begin{multline} O(1) \subsetneq \\ O(\log(n)) \subsetneq O(\log^2(n)) ... \subsetneq \\ O(\sqrt[3]{n}) \subsetneq O(\sqrt[3]{n} \log{n}) \subsetneq O(\sqrt[3]{n} \log^2{n}) ... \subsetneq \\ O(\sqrt{n}) \subsetneq O(\sqrt{n} \log{n}) \subsetneq O(\sqrt{n} \log^2{n}) ... \subsetneq \\ O(n) \subsetneq O(n \log(n)) \subsetneq O(n \log^2(n)) ... \subsetneq \\ O(n^2) \subsetneq \\ O(n^3) \subsetneq \\ ... \\ O(1.1^n) \subsetneq \\ O(2^n) \subsetneq \\ ... \\ \end{multline}$$Master Theorem
Let \(a \geq 1\) and \(b \geq 1\) be constants, let \(f(n)\) be a function, and let \(T(n)\) be defined on the non-negative integers by the recurrence: \[ T(n) = a T(n/b) + f(n) \] Then \(T(n)\) can be bounded asymptotically as follows.
- If \(f(n) \in O(n^{\log_b a - \epsilon})\) for some constant \(\epsilon > 0\), then \(T(n) \in \Theta(n^{\log_b a})\).
- If \(f(n) \in \Theta(n^{\log_b a})\), then \(T(n) \in \Theta(n^{\log_b a} \lg n)\).
- If \(f(n) \in \Omega(n^{\log_b a + \epsilon})\) for some constant \(\epsilon > 0\), then \(T(n) \in \Theta(f(n))\).
See this page for some examples and more explanations.
- 本頁最新版網址: https://frdm.cyut.edu.tw/~ckhung/b/al/asympt.en.php; 您所看到的版本: October 02 2022 10:29:18.
- 作者: 朝陽科技大學 資訊管理系 洪朝貴
- 寶貝你我的地球, 請 減少列印, 多用背面, 丟棄時做垃圾分類。
- 本文件以 Creative Commons Attribution-ShareAlike License 或以 Free Document License 方式公開授權大眾自由複製/修改/散佈。