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1 Introduction

Given a piecewise smooth object K, we study how it

may be placed stably on a horizontal and 
at surface.

We consider two versions of this problem.

The static version seeks to determine the set of sta-

ble poses of K, or the local minima of its gravitational

potential energy as a function of its orientation with re-

spect to the direction of the gravity. Such information

is useful for example, in a model-based vision system,

where the complexity of the recognition of static ob-

jects can be reduced as a result of reducing the number

of unknown parameters by two.

The more general version seeks to determine not only

the stable poses of K, but also a capture region for

each stable pose p, namely the set of all initial poses

released from which K will eventually roll into p. Con-

sider the last step of the path-planning algorithm for a

robot where the robot hand is about to place an indus-

trial part on a 
at surface. Knowledge of the capture

region for the desired object pose (which must be sta-

ble) helps the path-planning algorithm determine the

required precision of this operation. Comparison among

the capture regions associated with various stable poses

also leads to a better decision if the choice of the object

pose is an option for the algorithm.

Kriegman [Kri91] has taken the direct approach to

analyzing the stable pose problem. A complete imple-

mentation using this method would have to include six-

teen di�erent cases. His implementation, using homo-

topy method in solving the systems of algebraic equa-

tions, demonstrate the feasibility of the algorithm by

dealing with objects composed of natural quadratic sur-

face patches cut by planes without vertices.

z

The com-

putation time, however, is not very attractive even for a

simple object such as the one shown in Figure 1. (This is

our reconstruction of an example taken from [Kri91].) In

�
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Cases involving vertices are explicitly left out from the enu-

meration in his paper. They do not seem to pose any more theo-

retical or practical di�culties than the enumerated cases since the

algebra for the former is simpler.

extending the work to capture regions, Kriegman [Kri95]

gives a quadratic time algorithm for polyhedral objects.

His direct approach using strati�ed Morse theory in an-

alyzing the capture regions for an object composed of

algebraic surface patches, however, has to make certain

non-singularity assumptions that may be di�cult to en-

sure in practice.

In this paper we take the dual approach to solve these

two problems and extend Kriegman's results in several

ways. We establish combinatorial upper bounds for the

complexity of the potential energy function, from which

the results on the stable poses and capture regions can

be derived. This approach also allows us to remove the

non-singularity constraints and to enumerate the degen-

erate cases in a systematic way. Furthermore, the alge-

braic overhead is greatly reduced when K consists solely

of quadratic surface patches cut by planes.

2 Object Model and Assumptions

We assume that a piecewise smooth object K is

described as an unordered set of N (open) faces
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g whose union constitute a topological

polyhedron embedded in E

3

. [Cai68] Thus K is as-

sumed to be compact but may have an arbitrary genus,

need not be connected, and need not be a manifold.

Furthermore, each 2-face is assumed to be a G

2

simply-

connected surface patch, and each 1-face a G

2

curve

segment. In order to give explicit formulas for the fol-

lowing results, we also assume that each face is a regular

portion of an algebraic variety although this is not a re-

quirement for the validity of the cell theorem. Given a

face ', we use host to refer to the entirety of the alge-

braic variety of which ' is a portion.

Finally, we assume that the coordinate system is so

chosen that the origin coincides with the center of mass

of K. We will denote the origin by O.

3 Duality

The pedal of a surface is the loci of the perpendicular

foot dropped from O to a tangent plane to the surface

as the point of tangency moves on the surface. [BG92]

We naturally de�ne ped ', the pedal of a 2-face ' to

1



be the portion of its host's pedal which corresponds to

taking the tangent planes only within the extent of '.

We extend this notion and de�ne the pedal of a 1-face

' to be the collection of the perpendicular feet from O

to the planes which have a contact of order at least one

with '. Finally we de�ne the pedal of a vertex to be

the collection of such perpendicular feet to the planes

incident on the vertex.

The inversion of a point p in space is the the point

p=kpk

2

. We de�ne the dual of a face ' to be the point-

wise inverted image of its pedal and denote it by ~' =

inv ped'. It can be shown that

Theorem 1 In the arrangement of the duals of K's

faces, the cell which contains the origin is compact and

convex, and it is the polar set of K.

The polar set K

�

def

� fx : x � y � 1g of a set K is a

classical form of duality. [Lay92]

For objects consisting of algebraic 2-faces and edges,

the dual faces can be computed by performing variable

elimination. [Col75, IK93, Man93] We shall see, how-

ever, that this problem reduces to linear algebra on small

matrices (4 by 4) when K consists of quadratic surface

patches cut by planes, thus making the dual approach

very attractive in practical terms.

4 The Potential Energy Function

Consider representing the boundary of the polar set

K

�

in spherical coordinates. The radius is thus a single-

valued function of the longitude and latitude since K

�

is convex. The graph of the radius function of the polar

set is precisely the reciprocal of the potential energy of

the object as a function of its pose. Several questions

regarding the stable poses and their respective capture

regions can be answered once we construct a description

of this function. In particular, the stable poses corre-

spond to the local maxima of this function. It is shown

in [Hun95] that

Theorem 2 Let K be a piecewise smooth object with

N faces such that each face has a bounded number of

subfaces. Then the boundary of K

�

can be constructed

in randomized expected time O(N

2+�

) for arbitrary but

�xed � > 0.

The proof is by way of reduction to Sharir's algorithm

[Sha93] for constructing the lower envelope in an ar-

rangement of surface patches. Thus we have the follow-

ing

Corollary 1 There are at most K

2+�

stable poses for

the object in Theorem 2. It can be computed in the same

amount of time, barring algebraic overhead.

Corollary 2 The capture regions of the object in Theo-

rem 2 have a structural complexity of O(N

4+�

) and can

be computed in deterministic time O(N

4+�

).

Moreover, it is possible to treat in a systematic way

the degenerate cases and coincidences, which are hard

even to enumerate using the direct approach. Consider

three identical fat ellipsoids stacked on their \
at" sides

as in Figure 2. Aside from the two stable poses corre-

sponding to two one-point contacts (top and bottom),

it is not hard to see that there are two other stable

poses corresponding to the two contacts where each el-

lipsoid contribute a point and where the three points

of contact line up. It is not obvious whether the latter

stable poses should be considered one-point, two-point,

or three-point contacts. When one looks at its potential

energy function in the dual space, one realizes that in

the latter case each local maxima is the intersection of

three saddles, one of which can be considered gratuitous

in forming the local maximum (Figure 3). In general

such special cases can be resolved in the algorithm by

examining only the local structure of the radius func-

tion as opposed to having to consider features that are

far apart in the primal space. Distinguishing the local

maxima among all \critical poses" where certain partial

derivatives vanish is similarly facilitated by working in

the dual space.

5 Quadratic Surface Patches Cut by

Planes

The results in the previous section are more of theo-

retical interest since we have focused only on the com-

binatorial complexity. Kriegman's experimental results,

however, show that the dominating factor in computing

the stable poses is the algebraic overhead. Taking the di-

rect approach, his implementation has to solve a system

of quadratic functions in up to nine variables for simple

parts made of cylinder sections and spheres. Fortunately

the dual approach also reduces the algebraic complex-

ity dramatically in the case of quadratic surface patches

cut by planes. The variable elimination in the dualizing

step reduces to simple linear algebra operations.

In the special case of quadratic surfaces, the inverted

pedal becomes the classical duality in projective geom-

etry with a slight modi�cation (in fact just re
ect every

vector with respect to the origin). Thus to compute

the dual of a quadratic face ', we simply represent the

host surface by a 4 by 4 real symmetric matrix, say Q

and then invert Q | provided that the surface is non-

degenerate and hence Q is non-singular. The boundary

of the dual surface can also be obtained by mere linear

algebra without going through the elimination process.

Let y be the 4-vector representation of a cutting plane

H of '. The pole of H with respect to the host of '

dualizes to the cutting plane of ~' which determines the

extent of the dual face, and is simply yQ

�1

.

We also have to give a recipe for computing the du-

als in the degenerate cases such as cones and cylinders.

In this case we �rst compute Q = U�U

T

where U is



orthogonal and � is diagonal. Let �

0

be the same as �

except with the vanishing diagonal entry replaced by 1.

Then ~' is the intersection of U (�

0

)

�1

U

T

with the plane

whose coe�cients are the eigenvector of Q correspond-

ing to the vanishing eigenvalue.

Finally the duals of the edges can also be computed

e�ciently. Let 
 be an edge whose host is the inter-

section of a non-degenerate quadratic hypersurface rep-

resented by Q with a plane represented by the 4 by 1

matrixN . We �rst perform a QR factorization and write

N = (U

1

U

2

)

�

R

0

�

where U

1

is 4 by 1, U

2

is 4 by 3, both orthogonal, and

where R is upper-triangular and non-singular. Next

write Q as

Q = (U

1

U

2

)

�

A B

B

T

C

��

U

T

1

U

T

2

�

:

Then it can be shown that ~
 is the (degenerate)

quadratic surface U

2

C

�1

U

2

.

Putting all this together, we conclude that the domi-

nant algebraic calculations involved in �nding the stable

poses of such objects are:

� Solving a system of 3 quadratic equations for each

vertex of @(K

�

).

� Maximizing a quadratic function over the inter-

section of two quadratic surfaces for each edge of

@(K

�

). Note that the intersection has a closed form

parameterization.

� Maximizing a quadratic function over a quadratic

surface for each dual face. This can be reduced to

�nding the root of a univariate polynomial of degree

6.

Note that this does not take into account the reduction

to the lower envelope problem and its solution, which

would incur additional algebraic overhead. In the next

section we propose an approximation algorithm that

may not be asymptotically optimal, but is extremely

e�cient in practical terms, as demonstrated by our im-

plementation.

6 An Approximation Algorithm

In the dual space, consider shooting rays from the

origin with nearly regular spacing between the rays, for

example, doing so uniformly at the grid points of the

longitudinal and latitudinal lines on the unit sphere.

Create a planar graph whose vertices correspond to the

rays and whose edges connect the neighboring rays in

a natural way (such as the longitudinal sections and

latitudinal sections in our example). For each ray �nd

the �rst dual surface it hits and compute the tangent

plane at the point of intersection. The planar graph can

be re�ned by adding vertices between adjacent vertices

which fall on di�erent dual faces, adding edges between

the newly added vertices which surround the same face

of the graph and fall on the same dual edge, and �-

nally adding new vertices which correspond to the in-

tersections of the new edges. In this way we create a

�ner description of the potential energy function than

is necessary. The combinatorial complexity is raised by

a quadratic factor of the resolution of the rays (and re-

duced by a linear factor in the number of the object fea-

tures) whereas the algebraic overhead required to con-

struct it is substantially lower. Our partial implemen-

tation using C++ shows that the performance is rather

realistic.

It takes roughly one minute to create, among other

things, a mesh of about 100 by 50 (which is su�cient for

this particular example) for the radius function of the

polar set of a 6-piece pipe like Figure 1 (reconstructed

from [Kri91]) even on an i486-33 running OS/2 or Linux.

The radius function of the polar set is shown in Figure 4.

Such uniform sampling scheme in the dual space can

be understood as weighing the sampling density (num-

ber of rays per unit area on a face), in the primal space,

by the Gaussian curvature of the face since the latter

is the limiting ratio between the area of the Gaussian

sphere and the surface area in the primal space. Intu-

itively, we are sampling more frequently at badly curved

places, and saving our \sampling bandwidth" at rela-

tively area of the convex hull of the original object.
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Figure 2: Is this a one-point, two-point, or three-point

contact?
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Figure 3: The radius function of the stacked ellipsoids.
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Figure 4: The radius function of the polar set of the

pipe �tting.
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Figure 5: The contour plot of the radius function of the

polar set of the pipe �tting.


