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1 Introduction

We study geometric duality and use it to ob-

tain an asymptotically e�cient algorithm for

constructing convex hulls of piecewise smooth

objects in E

3

. Speci�cally, we show that the

convex hull of a collection of N smooth alge-

braic surface patches of bounded degree with

bounded number of similarly constrained sub-

faces in E

3

has complexity O(N

2+�

) for all � >

0 and can be constructed in randomized ex-

pected time of the same complexity. The dual

construction also produces an O(N logN) al-

gorithm for constructing the convex hull of an

unordered collection of N algebraic curve seg-

ments and points in E

2

.

For quadratic surface patches bordered by

(an arbitrary number of) segments of conic

sections, one can always obtain a closed form

parameterizations of the the new surfaces

which arise in the construction of the convex

�
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hull. Point classi�cation against the hull may

be performed in time O(N logN log

�

N) using

a simple algorithm without explicit construc-

tion of the hull.

2 Object Model

For integer 1 � k � d an open k-cell is

a subset of E

d

homeomorphic with B

k

. A

closed k-cell is a subset homeomorphic with

B

k

. We restrict our attention to open k-cells

which are either di�eomorphic images of unit

k-cubes (so that we can easily parameterize),

or those which are also semi-algebraic sets. In

either case a tangent space of dimension k is

uniquely de�ned at each point in the open cell.

Furthermore, the boundary of the cell can be

partitioned into a �nite collection of lower di-

mensional cells with similar properties. We

call such cells smooth open k-cells and loosely

use the term closed k-cells to refer to their

closures. When the context makes the dis-

tinction between open and closed cells unim-

portant or obvious, we will also use the term

face interchangeably with cell in accordance to

the convention in computational geometry. [1]

The faces that compose the boundary of face

' are called subfaces of '.

Objects we deal with are �nite complexes

of such smooth faces. A complex K is a col-

lection of open cells such that if '

1

; '

2

2 K

1
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then '

1

\ '

2

are disjoint unions of open cells

which are also in K (including the case for

'

1

= '

2

). Thus our objects need not be

dimension-homogeneous as subdivided mani-

folds in [2] and need not be connected.

3 Duality

Recall that if K is a nonempty subset of E

d

,

then the polar set K

�

of K is de�ned to be

K

�

� fx 2 E

d

: x � y � 1 for all y 2 Kg :

(See [3].) If the convex hull ofK contains O in

its interior, then convK = K

��

. This is how

we shall compute the convex hull of a complex.

This classical duality map has an intuitive

interpretation. Given K � E

d

, the set of hy-

perplanes in E

d

can be partitioned with re-

spect to K into

� H

c

(K) the set of hyperplanes which cut

K,

� H

s

(K) the set of hyperplanes which sup-

port K. and

� H

b

(K) the set of hyperplanes which

bound but do not support K.

We also write H

bs

(K) for H

b

(K) [ H

s

(K).

Suppose the convex hull of K contains the

origin O in its interior. If for each hy-

perplane in H

bs

(K) we �nd the perpendic-

ular foot dropped from the O and take the

inversion

{

, then we obtain the polar set K

�

.

Thus we shall represent a hyperplane H by

by

~

H, the inverted image of the perpendicu-

lar foot dropped from O to H .

For a smooth cell, the tangent hyperplanes

a�ord an easier formulation from a combina-

torial point of view. Let ' be a smooth k-face

{

Inversion in E

d

is a point-to-point transformation

which maps a vector v to the vector invv = v=jvj

2

. [1]

Figure 1: A dimpled surface and its dual. The

two \umbrellas" turned inside out correspond

to tangent planes to points in the two dimples.

The apparent sharp cuspidal edges of the um-

brellas are duals of two parabolic curves inside

the dimples.

in E

d

. De�ne H

tan

(') to be the set of hy-

perplanes which contain the (k-dimensional)

tangent space of some point p 2 '. Similarly

H

tan

(K) for a complex K is de�ned to be the

union of H

tan

(') for all faces ' of K. For a

closed line segment in E

d

, for example, H

tan

and H

s

coincide. In the more general case

H

tan

is a good \approximation" ofH

s

. In fact,

H

s

(') � H

tan

(') � H

s

(') [H

c

(')

Our algorithm is based on the following

Theorem 3.1 Let K � E

d

be a complex

whose convex hull contains O in the interior.

Then K

�

is the (unique) convex cell in the ar-

rangement of

~

K that contains O in its inte-

rior.

The well-known fact that the new surfaces

arising from convex hull construction in E

3

are developable becomes an immediate corol-

lary since the intersection curves in the dual

space dualize to developable surfaces.

Figure 1 shows a 3-d example | a \dim-

pled" object whose boundary is the zero set

of

(4x

2

+ 3y

2

)

2

� 4x

2

� 5y

2

+ 4z

2

� 1

(This equation is taken from [4].) Its dual

is presented on the right. The two \umbrel-

las" turned inside out correspond to tangent

planes to points in the two dimples, which do
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not contribute to the convex hull. The appar-

ent sharp cuspidal edges of the umbrellas are

duals to two parabolic curves inside the dim-

ples. The convex hull is not completed by just

a single common tangent plane on each side.

Correspondingly, the self-intersections of this

surface in the dual space consist of a pair of

curves, dual to two developables that cover

these dimples on the convex hull of the primal

surface.

4 An Asymptotically E�-

cient Algorithm in E

3

The convex hull of a complex can thus be con-

structed in three major steps:

1. Find dual for each face to form an ar-

rangement of hypersurfaces in the dual

space. Each face can be processed in-

dependent of other faces except for its

subfaces. Duals of faces need be bro-

ken at their singularities even though the

primal faces are assumed to be smooth.

This step takes time linear in the size of

the input times an factor determined by

the maximum degree of the input surfaces

and curves.

2. Find the polar set by constructing the cell

containing the origin. The polar set can

be constructed using a number of cell con-

struction algorithms such as [5, 6]. An

asymptotically more e�cient alternative

is to reduce our problem of constructing

a convex cell to that of the lower enve-

lope of some other arrangement. Let e be

the inward-pointing, unit normal of the

boundary of an arbitrarily chosen halfs-

pace H with O on the boundary. Con-

sider the following function de�ned on the

interior of H :

K : x 7�! �

�1

x+ �e

where � = x � e. Its e�ect is to take vec-

tors along the same direction to vectors

ending in the same line parallel to e, with

their order on the original direction pre-

served. The boundary of half of the cell

we wanted to construct now becomes the

lower envelope and can be computed in

time O(N

2+�

) for all �xed � > 0 using

the algorithm in [7]. Note that the topol-

ogy of the surfaces on each hemisphere

is unchanged by this transformation and

that this transformation is rational in the

arguments.

3. Dualize the polar set. Once we have the

boundary of the polar set, we need not

go over the �rst two steps again to ob-

tain the convex hull in the primal space.

Each face on the boundary can be du-

alized back individually. New edges are

added between the duals of adjacent faces

and the number of features of the dual

graph is at most 6 times that of the polar

boundary.

Note that we don't require much topological

information as input since the dual is com-

puted piece by piece.

Theorem 4.1 Let K be a complex with N al-

gebraic faces of bounded degree each with a

bounded number of subfaces. Then the con-

vex hull of K has O(N

2+�

) faces for any �xed

� > 0. It can be computed in randomized ex-

pected time O(N

2+�

) for any � > 0 where the

constant depends on the maximum degree of

the polynomials in the input.

5 Quadratic Surface Patches

The algebra simpli�es signi�cantly when the

input is a quadratic complex , one whose 2-

faces are conicoid (including plane) patches

and whose 1-faces are segments of conic sec-

tions (including lines). The equations for the
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Figure 2: The union of two ellipsoids and a

truncated cone.
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Figure 3: The polar set of the object, recov-

ered as the cell containing the origin in the

arrangement of dual surfaces. All dual faces

are quadratic or planar.

duals are simpler, and it is easy to enumerate

all possible singular cases.

Lemma 1 Let � be the quadratic hypersur-

face fx 2 P

d

: x

T

Ax = 0g, where A is a real

invertible matrix. Then

~� = f
~
x : x

T

Bx = 0g (1)

where B is A

�1

with all elements in the �rst

row and �rst column, except the element in

the upper left corner, negated.

Lemma 2 Every face on the convex hull of a

quadratic complex has a closed form parame-

terization.

Figure 2 shows two ellipsoids and part of a

cone in space. The contribution of the cone to

the convex hull is limited to its vertex. The

f
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Figure 4: The convex hull of the original ob-

ject, recovered from the dual of the polar dual

(previous �gure). Note that f

1

is planar since

it is dual to the triple intersection (vertex)

in the previous �gure. Other new surfaces

(f

2

; f

3

, and f

4

) are developable, and arise from

the corresponding edges of the polar set.

dual of the cone and that of its base circle are

not shown, so as not to clutter the pictures.

Curves of intersection have also been omitted,

since they too do not contribute to the hull.

The ellipsoids have implicit equations e

1

:

29x

2

+36y

2

+180z

2

�24xy�48x+144y�36 = 0

and e

2

: 225x

2

+ 612y

2

+ 388z

2

� 768yz �

2448y+1536z+1548 = 0. Their duals are ~e

1

:

36x

2

+9y

2

+5z

2

+24xy�20y�5 = 0 and ~e

2

:

100x

2

�3y

2

+153z

2

+192yz+100y�25 = 0. To

�nd the polar set, we trim o� the extraneous

pieces of the surface patches, leaving alone the

innermost cell in the dual space. It has three

2-faces as shown in Figure 3. Finally the polar

set is dualized back to the primal space and

the convex hull is obtained as in Figure 4.

6 Practical Considerations

Testing whether a point is within the con-

vex hull of a quadratic complex can be per-

formed using a straightforward algorithm in

time O(�

4

(N) logN) without explicit con-

struction of the hull. This can be useful if

the sole purpose of constructing the convex

hull is to classify a small number of points
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against the hull. Point classi�cation trans-

lates to determining whether the intersection

of a plane in the dual space with the polar set

is empty (inside), singleton (on boundary), or

otherwise (outside). This can be computed

by a divide-and-conquer algorithm which con-

structs the intersection of halfspaces bounded

by conic sections on the plane.

The convex hull can be rendered without

explicit construction. In the dual space we

choose a set of nicely spaced directions, for ex-

ample, ones corresponding to the grid points

on the unit sphere with chosen longitudes and

latitudes. For each direction we shoot a ray.

This ray is intersected with each dual surface

to �nd the intersection point nearest the ori-

gin. The tangent plane to this dual surface is

found, dualized, and then plotted. It is clear

that if these directions form grid points on

the boundary of the polar set such as the sug-

gested choice, so will the plotted points in the

primal space. Moreover, neighboring plotted

points in the primal space have similar normal

directions, a good choice for rendering. This

technique is applicable to general complexes

such as the dimpled surface in Figure 1, whose

duals are too complicated to derive symboli-

cally.

In case the hull needs to be constructed, ex-

isting simpler algorithms for converting CSG

to boundary representations such as [8, 9]

may be modi�ed to work in the dual space.

Although not as asymptotically e�cient as

the reduction to the lower envelop algorithm,

these alternatives have been implemented or

are easier to implement and have other uses

in the primal space.

In CAD and CSG applications, being able

to represent the original and derived surfaces

and curves symbolically as opposed to numer-

ically means a signi�cant saving in storage.

Better yet, one would usually like to have a pa-

rameterized representation available for ren-

dering and other purposes. Fortunately we

can do both quite e�ciently with the duals

and convex hulls of quadratic complexes. The

fact that each conicoid is entirely either el-

liptic, parabolic, or hyperbolic also allows us

to discard all parabolic and hyperbolic surface

patches from the very beginning as their duals

can never be part of the boundary of a convex

cell by themselves.
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